Multimorbidity Clusters among Older Australians

Results from a Population-Based Survey

Lucy Busija, Catherine Connaughton, Marita McCabe, Geoff Nicholson, Kerrie Sanders, Gemma Tatangelo

Multimorbidity

- Co-occurrence of two or more diseases within one person without defining an index disease (van den Akker, 2001)
- Estimated prevalence (Britt, 2008):
 - 29% of all primary care patients
 - 83% of primary care patients aged 75 years+
- Associated with
 - Decreased health-related quality of life (Fortin, 2006)
 - Increased healthcare use (Foguet-Boreu, 2014)
 - Increased mortality (John, 2014)

Which conditions co-occur?

- Past studies: between 3 and 6 clusters
 - Cornell, 2007: 6 clusters
 - Metabolic, obesity, liver, neurovascular, stress, dual diagnosis
 - USA primary care patients (N=1,327,328)
 - Schafer, 2010: 3 clusters
 - Metabolic, mental/somatoform, neuropsychiatric
 - German adults 65+ years (N=86,176)
 - Garin, 2015: 3 clusters
 - Cardio-respiratory, metabolic, mental-articular
 - Adults 50+ years from 8 countries (N=41,909)

Which conditions co-ocure?

Australian-based studies

- Holden, 2011
 - 1. MSK, bladder problems, irritable bowel
 - 2. Respiratory and allergies
 - 3. Back/neck pain, migraine, other chronic pain, arthritis
 - 4. Metabolic, fatigue
 - 5. Metabolic, fatigue, arthritis
 - 6. Irritable bowel, ulcer, heartburn, other chronic pain
 - Working-age Australians (N=78,000)
- Islam, 2014
 - 1. Respiratory, MSK, depression
 - 2. High blood pressure, diabetes
 - 3. Cancer
 - Australian adults 50+ years (N=4,574)

Background

- No consistent findings on the number and type of morbidity patterns
- Generalisability of the identified patterns?
 - Differences in study methodology
 - Statistical methods applied
 - Case identification methods
 - Applicability to older individuals?
- Aim:
 - To examine multimorbidity patterns among community-dwelling older Australians (70+ years)

Methods


- Data source
 - 2007 National Survey of Health and Wellbeing
 - Australian Bureau of Statistics
 - Face-to-face interviews
- Measures
 - Physical health conditions
 - Self-report of prior diagnosis
 - Mental health conditions
 - DSM-IV lifetime diagnoses
 - The WHO Mental Health Composite International Diagnostic Interview (WHO CIDI, Robins 1988)

Methods: Statistical analyses

- Latent class analysis (LCA)
 - Exploratory technique
 - Aims to identify as yet unobserved subgroups (latent classes) within a larger population
 - Number and composition is not known in advance
 - A number of solutions with different number of classes need to be examined to identify one that represents the observed data best
 - Solutions with 2-6 classes were examined

Methods: Statistical analyses

Figure 1: Schematic representation of latent class analysis

Methods: Statistical analyses

- Criteria for optimal class enumeration:
 - Bayesian information criterion (BIC)
 - Weight of evidence favouring one solution over others
 - Lower values = better model
 - Entropy
 - Amount of non-overlap in class allocation
 - Higher values = better model
 - Likelihood ratio tests
 - Significance of the contribution from k+1 class
 - p<.05 favours model with more classes
 - Clinical meaningfulness of classes
 - Minimum 100 observations per class

- Participants (N = 1,269)
 - Median age 76 years (range 70-85)
 - 55.0% females
 - 47.6% partnered, 37.4% widowed
 - 85.7% from English-speaking background
 - 80.3% did not complete high school
 - 56.2% with BMI in overweight or obese range
 - 50.5% current or past smokers

Table 1: Frequency of health conditions in the study sample

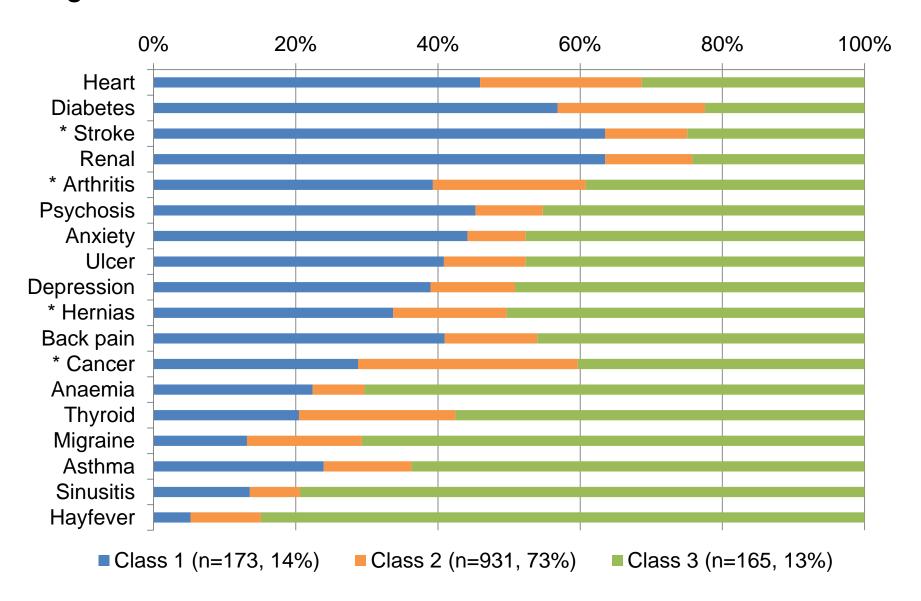

	Condition	N	%		Condition cont.	N	%
1	Heart disease	715	(56.3)	10	Stroke	122	(9.6)
2	Arthritis	695	(54.8)	11	Thyroid disorders	107	(8.4)
3	Back pain	411	(32.4)	12	Ulcer	104	(8.2)
4	Cancer	319	(25.1)	13	Depression	100	(7.9)
5	Diabetes	199	(15.7)	14	Renal problems	89	(7.0)
6	Asthma	183	(14.4)	15	Migraine	89	(7.0)
7	Hayfever	153	(12.1)	16	Anxiety	85	(6.7)
8	Hernias	133	(10.5)	17	Anaemia	46	(3.6)
9	Sinusitis	128	(10.1)	18	Psychosis	40	(3.2)

Table 2: Results of class enumeration search

Number	Bayesian		Likelihood Ratio	Smallest		
of classes	Information criterion	Entropy	Lo-Mendell- Rubin	Bootstrapped	class N	
1	18654	N/A	N/A	N/A	1269	
2	18206	0.66	<.001	<.001	335	
3	18258	0.69	.064	<.001	187	
4	18351	0.59	.648	<.001	107	
5	18441	0.66	.226	<.001	23	
6	18535	0.70	.241	<.001	21	

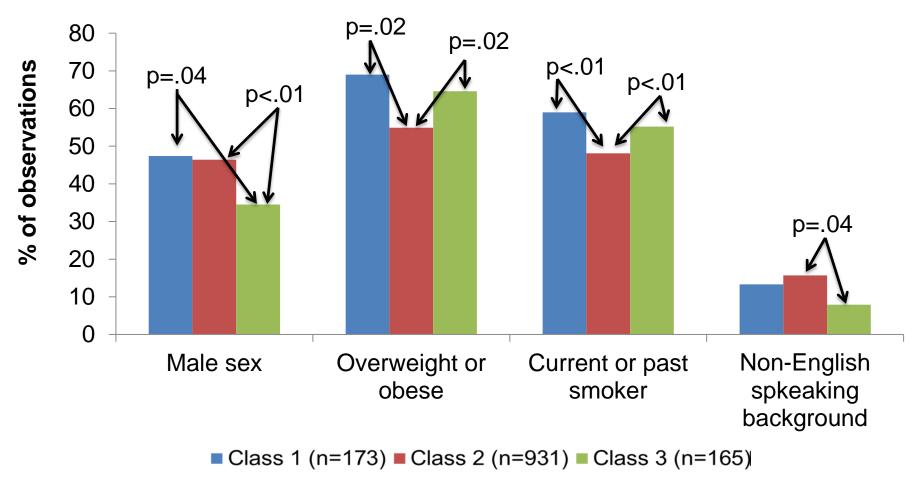
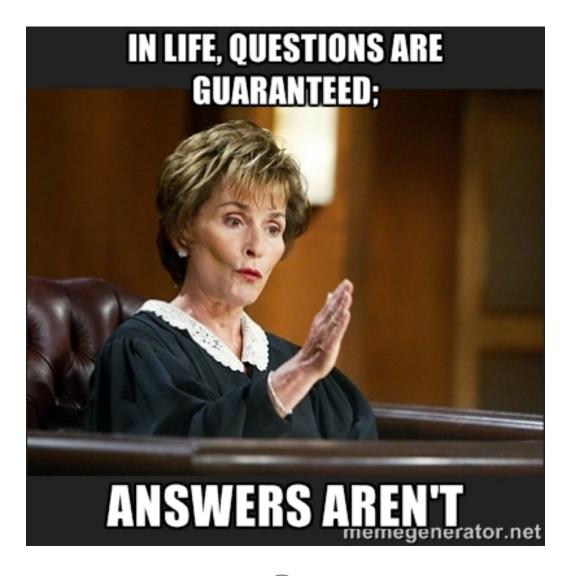

- 2 class solution
 - Class 1 (74%): 'healthy'
 - Class 2 (26%): 'unhealthy'
- 3 class solution
 - Class 1 (14%): renal, stroke, diabetes, arthritis, heart
 - Class 2 (73%): 'healthy'
 - Class 3 (13%): cancer, back pain, hayfever, migraine, anaemia, thyroid, sinusitis, hernias, ulcer, asthma, mental disorders

Figure 2: Latent class solution with 3 classes

Note: * p<.05 for class 1 vs class 3

Figure 3: Demographic characteristics of the identified classes


Note: No significant differences on education, primary language, or age.

Discussion

- Implications
 - The first Australian study to profile morbidity patterns in older individuals
 - Potential insights into common aetiology?
 - Increased potential to improve prognosis
- Limitations
 - Self-reported diagnoses of physical conditions
 - Cross-sectional data
 - Cannot determine 'causal' links between conditions

Conclusions

- Three main clusters of morbidity among older Australians
 - Metabolic, cancer/allergies, 'healthy'
- Further studies are needed to confirm the identified clusters in the target population
- Results can be used to develop targeted interventions aimed at the specific multimorbidity subgroups

Lucy.Busija@acu.edu.au

